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MEAN SQUARE INEQUALITIES 
FOR CHORDS OF CONVEX SETS 

BY 

P. R. GOODEY 

ABSTRACT 

This paper is concerned with establishing lower bounds for the integrals of the 
square of the lengths of area and perimeter bisecting chords of planar convex 
sets. The results obtained provide verification of two recent conjectures of 
Lutwak. When combined with the known upper bounds for these integrals they 
yield the classical isoperimetric inequality. The main proof technique involves 
estimation of the winding numbers of the locus of the midpoints of the chords 
concerned. 

1. Introduction 

The initial motivat ion for this paper  arises f rom some results of Lu twak  [8]. 

He  established some integral inequalities involving the lengths of per imeter  (and 

area) bisecting chords of planar convex sets. If K is such a set and 0 E [0,27r] we 

denote  by L ( K ; O )  (and A ( K ; O ) )  the lengths of the per imeter  (and area) 

bisectors of K which make  angle 0 with the horizontal .  Two of the inequalities 

established by Lutwak  are 

(1) 

and 

(2) 

, L O)dO 

A 2 ; < . 
} 

here L ( K )  is the length of the per imeter  of K. He  showed that  in both  cases 

equali ty holds if and only if K is a disc. More  recently it was shown in [3] that  

Lutwak ' s  inequalities can be extended to fairly arbitrary families of chords.  In 

fact if ~ is any family of chords of K such that  for each direction 0 there is 
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precisely one member f (O)E o% lying in that direction and if the chords f(O)vary 
continuously then 

~&(O)dO <- L(K)/Tr 
) 

where ~(0)  is the length of f(O). Here equality occurs if and only if K has 

constant width and f(O) is a chord of maximal length in direction 0. 

Our present aim is to establish lower bounds for the integrals in (1) and (2). 

We shall prove the following two results. 

THEOREM 1. Let K be a plane convex set with area A (K), then 

f 2~ L'-(K; O)dO _- 8A (K) 

with equality if and only if K is centrally symmetric. 

THEOREM 2. Let K be a plane convex set with area A (K), then 

f 2~ "-(K; )dO (K) A 0 >=_ 8A 
I 

with equality if and only if K is centrally symmetric. 

We notice that combination of these results with (1) and (2) yields the classical 

isoperimetric inequality 

47rA (K) <= L'-(K). 

Also it follows that 

(4) 

and 

max{L (K; 0):  0 E [0, 2zr]} >- 2 N/A (K)lTr 

(5) max{A (K; 0): 0 E [0, 2rr]} => A"~-~-)lTr 

with equality in either case occurring if and only if K is a disc. To see the equality 

conditions notice that for equality we certainly need K centrally symmetric. But 

then the perimeter and area bisecting chords are all bisected by the centre of K. 

Of course, we also require L(K;O) (or A ( K ;  0)) to be constant in order to 

obtain equality and so K must be a disc. The inequalities (4) and (5) were 

conjectured by Lutwak at the 1980 Oberwolfach "Konvexe K6rper" conference. 

They are in fact analogues of the Herda inequalities (see [1, 2, 4, 6, 7, 11]). 
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2. Preliminary results and observations 

The proofs of Theorems 1 and 2 will arise from a study of the winding numbers 

of certain closed curves contained within the convex set K. A key result which 

we shall use occurs in [3, equation (20)] and we shall state it here as a lemma. A 

family ~ of chords with the properties described in the introduction will be 

called a simple family. A smooth curve is one which is continuously differenti- 

able. 

LEMMA 1. Let ~ be a simple family of chords of K and let f(O) E ~ be the 
chord in direction 0 having length ~r(0). Let M(:T) be the locus of mid-points of 
the chords of .~ and assume that M ( ~ )  is piecewise smooth. Then 

f 1 fo z~ (6) A (g)  - Jz~u<~) w (z, M(~))dz  = -~ or2(0)d0. 

Here w(z, M ( ~ ) )  is the winding number of the closed curve M ( ~ )  about the 

point z. We shall always assume that the orientation of M(.~) corresponds to the 

chords of ~ rotating in an anti-clockwise direction. In the case when M ( ~ )  is a 

simple closed curve the integral on the left side of (6) is plus or minus the area 

enclosed by M(~:),  depending on whether the orientation of M ( ~ )  is respec- 

tively anti-clockwise or clockwise. 

We shall denote by ~ (and Y() the family of perimeter (and area) bisecting 

chords of K. If ~ = ~3 we shall put M(K)  = M( f f )  and if o ~ = Yt' put N(K)  = 
M(o~). It is now clear from (6) that we may obtain the required inequalities by 

showing that all winding numbers of M(K)  and N(K)  are non-positive. In fact 

we shall do this in the case K is a polygon and then use an approximation 

argument. 

LEMMA 2. If ~ = ~ or Y( then M(:T) is rectifiable. 

PROOF. First we introduce some notation which will be useful here and in the 

sequel. Let  re(K; O) denote the mid-point of the chord of ~ in direction 0 and 

let x(K; O) and y(K; O) be the end-points of this chord. We assume that x(K;  O) 
and y(K; O) are chosen in such a way that they vary continuously as functions of 

0. So we have 
M ( ~ ) = ( m ( K : O ) :  0 E [0, 27r]}. 

Now choose / g o . < # 1 < " ' < 0 n  with 0o=0  and 0 ,=2~ ' .  Then for i =  

0 , 1 , . . - , n - 1  we have 

lira(K, 0 ,+ , ) -m(K,  o,)11 <= IlIx(K, 0 1 * 1 )  - -  x(K, 0,)11 +lily(K, 0,+I)- y(K, 0,)11. 
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Consequently 

n--I ~ t t  I 

ttm(K,O,+,)-m(K,O,)ll <- ~ Ilx(K,O,+,)-x(K,O,)]l 
i =0 i =0 

n - I  

+-~ ~ {{y(K, O,+,)-y(K, 0,)11 
i=0  

<1 1 
=-~ L(K)+-~ L ( K ) =  L ( K ) ,  

and so M ( f f )  is rectifiable as required. 

The next lemma enables us to use an approximation argument  and thus allows 

us to concentrate on polygons for which, of course, the curves M ( ~ )  are more 

manageable.  In particular they are piecewise smooth. 

LEMMA 3. Let (K.)~=1 be a sequence of convex sets with K. ---> K as n ---> oo (in 
the Hausdorff metric). Then 

(7) L2(K. ;O)dO---~ L2(K;O)dO as n- - -~  

and 

(8) fo 27c fO 2~ A 2(K. ; O)dO-+ A 2(K; O)dO as n---*~. 

Only the first result will be established since the second can be PROOF. 

proved in an analogous fashion. 

We shall denote by [x,y]  the closed line segment joining the points x and y. 

For each n choose convex sets C(K, ; O) and D(K.  ; #) such that 

C(K. ; 0 ) U  D(K.  ; 0)= K. 

and C ( K . ; O ) N D ( K . ; O ) = [ x ( K . ; O ) , y ( K . ; O ) ]  for all 0@[0,27r] .  We are 

working with the case ,~ = ~ and so 

L(C(K,  ; 0)) = L(D(K,  ; 0)) 

for all n and 0. Now for fixed 0 the chords [x(K, ; O),y(K, ; 0)] converge to a 

chord l(O)of K in direction 0. Also the sets C(K. ; 0 ) a n d  D(K,  ; 0 ) c o n v e r g e  to 

convex sets C(K; O) and D(K;  O) respectively with 

C ( K ; O ) U D ( K ; O ) = K  

and 

C(K; O)(3 D(K;  O)= l(O). 
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But clearly L(C(K; 0)) = L(D(K; 0)) and so 

l (0)  = Ix(K; 0), y(K; 0)]. 

Also there is some constant a, say, such that 

L(K.;O)<=a 

for all n and 0. So the result follows from an application of the dominated 

convergence theorem. 

Next we note that because of the convexity of K, the one-sided tangents to K 

at the points x(K; O) and y ( K ;  0) always exist. In the case ~ = ~ we see that if 

the right (or left) hand unit tangent vectors t, and t2 at x(K; O) and y(K; 8) 
respectively are not parallel then M(K) has a right (or left) hand tangent at 

m (K;  0) and this tangent bisects tt and t2. In fact in the case K = P a polygon, 

the same observation shows that M(P) is a closed polygonal curve. 

If we still work with a polygon P but turn our attention to the case ~ = ~ we 

find that N ( P )  is a closed curve consisting of a finite number  of hyperbolic arcs. 

Closer examination of this situation shows that the chords [x(P;  0), y(P; 0)] are 

in fact tangent to their corresponding hyperbolas. Now let P be a polygon for 

which no two sides are parallel. Then if A~ and A2 are consecutive arcs of N(P) 
with 

A. D A2 = m(P;8) 

then either At and A2 lie on the same side of [x (K;  8),y(K; 0)] and N(P)has a 

tangent at m (P;  O) or the one-sided tangents to N(P) at re(P; O) are in opposite 

directions and At and A2 are on different sides of [x (K;  O),y(K; 0)]. If we now 

consider an arbitrary set K and approximate  it by means of a sequence of 

polygons it can be seen that the one-sided tangents to N(K) at m (K;  0) lie along 

the chords [x (K;  O),y(K; 0)]. 

Our  next aim is to investigate the convergence properties of certain winding 

numbers.  To do this we recall from [9] that a polygonal path 

= x,] u . - .  u [Xk-,,Xkl 

is an e-approximat ion to the rectifiable path s if there are points yo, '"  ",yk in 

order  along s such that for each r all points of the arc of s joining y, and y,+~ are 

within distance e of x,. The result we shall need is essentially contained in 

theorem 8.2 of [9, chapter VII]. It guarantees that if z ~ s and e > 0 is sufficiently 

small then 

w(z,s)= w(z,o') 
for any e-approximat ion  o, to s. 
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LEMMA 4. Let (P.) :=I  be a sequence of polygons with P. ~ K as n --> ~c. Then 

if z ~ M(K)  we have 

(9) lim w(z, M(Pn)) = w(z, M(K)). 

PROOF. We have seen in the proof  of L e m m a  3 that 

and 

!irn x(P. ; O) = x(K; O) 

!irn y(P. ; 0 )  = y(K; 0). 

In fact both  of  these are approached  uniformly.  To see this, assume for example 

that the first limit was only a pointwise limit. Then  there is an e > 0, a sequence 

(n(i))7=, with n(i)~oo and a sequence (0.,)),=t such that 

0o) IIx(P.,,,; 0 . , , , ) - x ( g ;  0.,,,)11 ~ c 

for all i. We may assume, by taking subsequences  if necessary,  that  0.to--~ 0 as 

i ~ oo. But  then 

x(P.,);O.,))---ox(K;O) as i ~  

and 

x(K;O.~o)-->x(K;O) as i --> oo. 

This contradicts  (10) and shows that the convergence  is uniform. Consequent ly ,  

given e > 0 we can choose  N such that 

lira (co ; o ) -  re(K; 0)11 < e 

for all 0 E [0,2~r] whenever  n => N. 

We fix some n => N and let or , ."  ", v~ be the vertices of  the polygonal  arc 

M(P~). Next  choose  points x l , ' "  ", xM in order  along M(P,)  so that  

{v,}L, c {xj~'~, 
and 

for j = 1 , . . - , M  where xM+~ = x~. For each integer j with ] ~ j  =< M we may 

choose 0j E [0,2~'] such that 

xj = m ( e ~  ; oj); 
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we make  this choice in such a way that  0~ < 0~< • •. < 0M. Now let y = re(K; O) 
for some  0 ~ [0,, 0,+~] then 

IIm(P. ; 0 ) -  yll < e -  

But m(P,;O)E[x,,x,+,] and so 

IlmtP  ; 0 ) -  x, II < e. 

Now we note  that  

M(P,,) = [x~, x2] U . . -  U [xM, x,] 

and thus M(P,) is a 2 e - a p p r o x i m a t i o n  to M(K). The  result  now follows f rom the 

observa t ions  preceding  the s t a t ement  of the lemma.  

It is clear that  we could ex tend  the not ion of e - a p p r o x i m a t i o n  to paths 

consist ing of a finite n u m b e r  of hyperbol ic  arcs. We  would then obta in  the 

ana logue  of L e m m a  4 in the case f f  = Y(. Tha t  is, if (P,)~=, is a sequence  of 

polygons  approach ing  K and z fY_ N(K) then 

(11) !ira w(z, N(P,)) = w(z, N(K)). 

We notice that  the curves M(P) and N(P) are t raversed  once as 0 varies f rom 

0 to 7r. It  is quite possible  that  they are not  s imple closed paths,  so we now 

invest igate  to what  extent  they can fail to be simple.  First we show that  no two 

distinct segments  of M(P) can contain a c o m m o n  subsegment .  If this were 

possible we would have  a segment  [a, b] C M(P) and angles 0~, 82, ~b~, ~b2 ~ [0, 7r] 

with 

and 

a =ln(P;O1)=rgl(P;02) (01<02) 

b =m(P;~bl)=m(P;qb2) (~b, < t~2). 

Then  we could find one-s ided  unit tangent  vectors  t~, t2, t3 and t4 at x(P; 01), 

y(P; 01), x(P; 02) and y(P; 02) respect ively  such that  the angles be tween  t~ and t2 

and be tween  1'3 and t4 are bo th  bisected by the line L th rough  the origin paral lel  

to the s egmen t  [a, hi.  But  the  pair  t~, tz must  be  inter laced with the pair  t3, t4 and 

so they cannot  have  a c o m m o n  bisector.  This contradic t ion shows that  two 

distinct segments  of M(P) intersect  in at most  one point.  

The  case ~ = Y( is much easier  to deal with. The  tangent ia l  p roper t ies  of the 

area  bisecting chords  clearly show that  no two hyperbol ic  arcs of  N(P) can 

contain  a c o m m o n  subarc.  Consequent ly ,  any two distinct hyperbol ic  arcs of 

N(P) intersect  in at most  four  points.  
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So we have seen that the curves M(P) and N(P) each have at most a finite 

number  of self-intersections. We now introduce a construction which reduces 

this number  of self-intersections and thus, in the case of polygons, enables us to 

consider just the case where M(P) (or N(P)) is a simple closed curve. 

We assume .~ = ~3 or ~g and that K is a convex set for which there are angles 

01, 02 with 0~<02 and m(K;O~)=m(K;02). Let H~ and H2 be the closed 

half-planes containing re(K; 0,) which are determined by the lines containing 

[x (K;  O0,x(K; 02)] and [y (K;  O.),y(K; 02)] respectively. Then put 

K(Oi, 02) = K 71 Hi fq H2 

and note that the boundary of K(0~,02) contains the segments 

[x (K;  0,), x(K; 02)] and [y(K;  0,), y(K; 02)]. Also if Q = K(0, ,  02) and 0~ =-< 0 _-< 

02 we have 

m(Q; O) = re(K;01)= re(K;02) 

whereas if 0 ~ [0, 01] LI [02, 7r] we have 

m(O;O) = m(K;O). 

Consequently M ( O ) C  M(K) or N ( 0 ) C  N(K) where in both cases these sets 

are thought of as oriented curves. An analogous construction produces the set 

K[Oz, O,~] whose boundary contains the segments [y(K;O2),x(K;O0] and 

[x(K;O2),y(K;O0]. In this case, if we put R =K[O~,02] we see that for 

O~_-<O-O~we have 

re(R; O) = m(K; O) 

whereas if 0 E [0, 0,] U [02, 7r] we have 

re(R; O) = re(K; 0,) = ra(g ; 02). 

Once again we have M ( R ) C  M(K) or N ( R ) C  N(K). Combining these two 

results we see that 

o r  

M(K) = M(Q) U M(R) 

N(K) = N(O)U N(R). 

In the case K = P a polygon we see that repeated use of these constructions 

will yield polygons Q~, 0 2 , "  ", Q, such that either 

M(P)= U M(O,) 
i=l 
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o r  

N ( P ) =  U N(Ol)  
i = l  

and such that for each i, M(Oi )  or N(Qi)  is a simple closed curve, Obviously, the 

above alternatives depend on whether ~ = ~ or ~ = ~f. We thus conclude that 

if ~ = ~ and z~. M ( P )  we have 

(12) w(z;M(P)) = ~ w(z;M(O,)) 
i=1  

whereas if ~ = ~ and z ~ N ( P )  we obtain 

(13) w ( z ; N ( P ) )  = ~ w( z ;N(O , ) ) .  
i=1  

The next lemma which we shall use to characterize the curves for which 

equality holds, shows that in order to prove the two theorems it suffices to focus 

our attention on sets of the form K(01, 02) and K[Oi, 02]. 

LEMMA 5. Let ~ = ~ or ~( and assume that there are angles 01, 02 with 

0<= O, < Oz<= ~r such that re(K;01)= re(K;02). We put O = K(01, 02) and R = 

K[O,, 02]. Then if ~ = ~ and 

~o 2~ L2(C; O)aO >-_- (C) 8A 

[or C = O and R, we have 

f7 (14) L z ( C ; O ) d O - 8 A ( C )  <- _ L 2 ( K ; O ) d O - 8 A ( K )  

[or C = O and R. Similarly if ~ = ~ and 

f] ~ ~(c; o)do >- (C) A 8A 

for C = O and R, we have 

fo f7 (15) A: (C;O)dO-8A(C)<= A2(K;O)dO 8 A ( K )  

for C = O and R. 

PROOF. We shall just establish (14) in the case C = O ;  the remaining three 

possibilities can be dealt with in the same fashion. 
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Let A denote the area of the triangle with vertices x(K;  01), x(K;  02) and 

re(K; Oj) and let B denote that of the triangle with vertices y(K; 02), x(K;  0 0 
and re(K; 0 0. Then clearly 

fol ~ L2(O; O)dO = Sa.  

We use this observation and its obvious analogues to see that 

L'-(K;O)dO = L2(O;O)dO-16A + L' - (R;O)dO-16B 
I I I 

>- L " ( O ; O ) d O + 8 A ( R ) - 1 6 A  - 1 6 B  
I 

f2o 
= L:(O;O)dO+8A(K)-SA(O) 

) 

from which (14) follows immediately. 

3. Proofs of the theorems 

As we have noted, in order to establish the required inequalities it suffices to 

show that if z ~ M ( , ~ )  then w(z;M(~))<=O in the cases ~ =  cg and 2(. 

LEMMA 6. Let P be a convex polygon for which M(P) is a simple closed curve. 
Then 

for all z ~ M(P). 

w (z, M(P)) <= 0 

PROOF. Let S and T be contiguous segments of M(P) such that S and T are 

not collinear and let a = S f 3 T .  We choose 01, 02 such that 0~_-<02 and 

re(P; O) = a for all 0 E [01, 02]. We also assume 01, 02 are chosen in such a way 

that 02-01 is maximal. Then put 

( ( 1))( ( 1) ) 
t ,= ! i rn  m ( P ; O , ) - m  P ; O , -  m ( P ; O i ) - m  P ; O l -  

and 

( (  )( ( 1) I) t : = ! i m  m P ; 0 2 +  - r e ( P ; 0 : )  m P ; 0 2 +  - r e ( P ; 0 2 )  . 

So t,, t2 are unit vectors lying along S and T respectively. Then there must be 
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one-sided unit  t angent  vectors q~, w~, q2, w2 at x(P;O O, y(P;O,), x(P;Oz), 

y(P;  02) respectively such that 

t, = (q, + w,)([Iq,  + w, I})-' 

f o r ' / =  1,2. For  any uni t  vectors u, v we deno te  by arc(u, v) the open  arc of the 

unit  circle jo in ing  u and v which goes from u to v when traversed anticlockwise.  

We say that M(P)  makes an anticlockwise turn at a if 

t2 E arc(tl, - tt). 

We assume initially that q~ E arc (w~, - w~). Then  since w2 E arc (w~, q~)except  

when  0~ = 02 and w~ = w~., we see that a necessary and sufficient condi t ion  for an 

anticlockwise turn  at a is q2E arc(w,. , -  w2). Now let a = aba2, . . . ,an  be a 

sequence  of consecut ive  vertices of M ( P )  at each of which M ( P )  makes an 

anticlockwise turn.  Then  if t, and t,~ are uni t  t angent  vectors along the segments  

of M ( P )  enter ing  and leaving a, we can find uni t  t angen t  vectors q,, w, such that 

t, = fq, + w,)([[ q, + w, II)-' 

for i = 1,- •., n + 1. Because of the order ing of the a, we have 

w,+, E arc (w,, w,+2)C arc(wl, q,) 

and 

q,+t ~ arc(q,, q,÷2) C arc(q~, w~) 

for i = 1,- • -, n - 1. Also since each of the turns  at the a, is anticlockwise we 

have 

and thus 

q, ~ arc(w,, - w,)C arc(w,, - q t )  

t, E arc(t,, qf)  

for each i = 1,. - -, n + 1 where qi ~ is or thogonal  to q~ with 

q~ E arc(q,, - q~). 

Hence  

ti E arc(tl, - tl) 

and  so, in part icular ,  an#at .  Now assume fur ther  that  ao, aj, . . . ,an+l are 

consecut ive  vertices of M ( P )  with clockwise turns  at ao and an+~ and anticiock- 

wise turns  at all o ther  ai. So we now have,  in addi t ion,  vectors qo, Wo, qn+2, wn+2 

with 
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t, : (q, + w , ) ( l l q ,  + w, Ii)-' 

for i = 0 and n + 2. Because of the clockwise turns at a,, and a,,+~ we have 

w~ E arc (q~, - q~) 

for i = 0  and n + 2 .  But 

and 

and so 

w.+2 ~ arc(wl,  q,) 

qn÷2E a r c ( -  wn+2. w,) 

t, E arc(t.+., - t.+2). 

Consequently the total anticlockwise variation from tl to t,+~ is less than lr and 

t.+2 is on the clockwise side of t~. Similarly. since 

qo ~ arc(w.+,, q~.,) 

and 

we have 

w,, E arc (qo, - q,÷l) 

t . E  arc (t.÷~, - tn+O. 

Thus we also see that t.÷l is on the clockwise side of to. 

If we changed our initial assumption to the alternative condition that 

w, C arc(ql, - ql) 

we would, by means of analogous arguments,  come to the same conclusions 

concerning the total anticlockwise variation and the relative positions of t~ and 

t,+z and of to and t,÷~. 

These observations show that there is a sequence So, S,, .  •., Sm of segments of 

M ( P )  such that S~÷~ follows S~ along M ( P )  with the following properties: 

(i) Sm = So; 
(ii) if s~ is the unit tangent vector to M ( P )  along S~ then 

s,., ~ arc( - s,, s,) 

and so = sm = to; 

(iii) the S~ are precisely the segments of M ( P )  immediately preceding vertices 

at which M ( P )  makes a clockwise turn; 

(iv) any segment T of M ( P )  lies between two consecutive members  of 

{S,,,.. ",Sin}, say T ( ~  S~) follows S~ and is followed by S,÷~, if t is the unit 

tangent vector to M ( P )  along T then 
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t ~ arc(-  s,,s,.,) 

where the horizontal line denotes closure. 

Let u, and u,+~ be unit tangent vectors to M(P) along two consecutive line 

segments U, and U,.~ of M(P) and put {b~} = U~ n U,÷j. If M ( P )  makes an 

anticlockwise turn at b~ and t E arc(u, u~÷~) we say that t supports M(P)  at b~. 

Similarly if M ( P )  makes a clockwise turn at b~ and t E arc(u,.~, u,) we say t 

supports M(P) at b~. We shall also say that ui supports M(P) at all points of U~. 

Thus using propert ies (ii) and (iv) above we see that if so supports M ( P )  at a 

point p of M(P) following ao (as well as at ao, of course) then there is an i such 

that 

So E arc ( - si, s, ). 

So if q follows p on M(P) but precedes ao and t supports M(P) at q we see that 

q Carc( - so ,  s,) 

and in particular q #  -so.  
Next we let To and T~ be the segments of M(P) containing ao such that T~ is 

parallel to t~ for i = 0 and 1 and denote by Lo and L~ the lines containing To and 

Tl respectively. Let C denote the open cone defined by Lo and L~ and which 

does not contain To or Tt on its frontier. We shall assume there is a point bo # a~ 

such that 

b o E M ( P ) N L o N  

and seek a contradiction. In this case as we move along M(P) from ao to bo we 

see that since both these points lie on Lo there must be a point p between ao and 

bo such that So supports M(P) at p. Similarly there must be a point q E M(P) 
between bo and ao such that - So supports M(P) at q. But we have just seen that 

this is impossible and so we have the required contradiction. Since there is no 

such point bo we can use the simplicity of M(P) to choose a point x in the 

interior of the convex hull of To and T1 such that if R is the ray issuing from x 

and containing ao then 

R n C n M ( P ) = O .  

Consequently we can assume that x is chosen so that 

R n M(P) = {ao} 

and hence w (x ; M(P)) = - 1. But M(P) is simple and so has only one bounded 

residual domain. Consequently w (z ; M(P)) <= 0 for all z ft. M(P) as required. 
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LEMMA 7. Let P be a convex polygon for which N ( P ) is a simple closed curve, 

Then w (z, N ( P ) )  <_- 0 for all z ~ N(P) .  

PROOF. The proof is very similar to that of Lemma 6 and so we only sketch 

the main ideas, We recall that N ( P )  consists of a finite number  of hyperbolic arcs 

and the area bisectors are tangents to their corresponding arcs. The vertices of 

N ( P )  are the intersections of consecutive hyperbolic arcs. We say that N ( P )  

makes an anticlockwise turn at a vertex v if both the arcs at v lie on the same 

side of a tangent to one of them at v. Again the proof hinges on the fact that the 

total consecutive anticlockwise variation of a sequence of these arcs is less than 

~r. If this were false, then because of the tangential properties of the area 

bisectors we would obtain two distinct parallel area bisectors, which is clearly 

impossible. The proof can now be completed by finding a point with negative 

winding number  exactly as before. 

It follows from Lemmas  6 and 7 that if ~ = ~3 or 9( and P is a polygon for 

which M(o%) is simple then 

(16) w(z,  M ( ~ ) )  <- 0 

for all z ~ M ( ~ ) .  Combining this with equations (12) and (13) we see that (16) 

holds for all polygons P. Consequently Lemma 1 shows that 

(17) 8A (K)  <= tr2(O)dO 

in the case K is a polygon and ~ = ~ or ~ .  But any planar convex set can be 

approximated by means of polygons and so Lemma 3 ensures that (17) holds for 

arbitrary convex sets K. Thus we have obtained the inequalities of our theorems 

and it remains to characterize the case of equality. 

So we assume for ~ = q3 or ~ that for some convex set K 

(18) 8A (K)  = tr2(O)dO 

and aim to show that K is centrally symmetric.  Clearly the converse is true. First 

we consider the case where M ( ~ )  is a simple closed curve. Then providing it is 

not a single point we can find a closed disc D contained in the bounded residual 

domain of M ( ~ ) .  Let (P.)~=~ be a sequence of polygons with P. ~ K as n ---~ oo. 

Let c~ (Wn) denote the family of per imeter  (area) bisectors of P. and let o~n = q3n 

or ~ according as ~ = q3 or ~ and denote by tr~ the length of a typical number  

of ~ . .  Then we use Lemmas  1 and 4 together with (11) and (16) to deduce that 

for sufficiently large values of n 
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S, 8A ( P . ) -  o'~(O)dO = 8  w ( z ; M ( ~ . ) ) d z  
) f ~ M ( ~ n  ) 

<= 8 S. ~o w (z ; M(o~,, ))dz 

---) - 8A (D)  

as n - ~  oc. Thus,  by L e m m a  3 

fO 27r 8A (K) - (r'~(O)dO <- - 8A (D) < 0 

which contradicts  (18). Hence  if K satisfies (18), ,~ - ~ or  ~ and M ( , ~ )  is a 

simple closed curve it must  be a single point.  Hence  all the per imeter  (or area) 

bisectors bisect each other.  So it follows f rom [10] that  K is centrally symmetric .  

Consequent ly  we now assume that M( ,~ )  is not  simple. So we can find angles 

0~, 0~, Oo with 0~<  011<0" and 

re(K; Oi) = re(K; 0;) # re(K; 0o). 

Put 

= sup{$  - 0 : 0~_-< 0 < & 6 0o, m ( K ; O ) =  m ( K ; $ )  and 

there is a A E (0,&) with m ( K ; A ) #  m(K;O)}.  

If 8 > 0 we may choose  at ,  fll with 0~_- < Ctl < [31 ----< 00, In (K;a l )  = m (K;[3  0 and 

[ 3 1 - a , = &  Then  clearly m ( K ; O ) # m ( K ; a l )  if O~-[al,[31]. We put KI = 

K(al ,  [31) and 

81 = sup{~b - 0 : 0'1 < 0 < $ _-< 0o, re(K,; O) = re(K1; e~) and 

there is a A E ( 0 , $ ) w i t h  m ( K 1 ; A ) #  m(K1;O)}. 

Again  if & > 0  we may choose  a2, f12 with 0~<-_a2<[32<0o, m(Kt;a2)  = 
re(K,; [32) and [32 -a2  = & We note that 

(~,, [31) n ( ~ ,  [3~) = 0 

and put Kz = Kl(al ,  [31). Cont inuing in this fashion we genera te  an at most  

countable  collection of sets KI, K2,- • • and ei ther  8, = 0 for some n or  6, --* 0 as 

n --) :¢. Because of the Blaschke Selection T h e o r e m  we may assume K, --~ K*  as 

n--->oo. Then  clearly M ( K * ) C M ( K , )  for all n or  N ( K * ) C N ( K . )  for  all n 

according as ~ = ~ or  ~ .  We shall let ~* ( ~ * )  denote  the family of per imeter  

(area) bisectors of K*  and put ~-* = ~* or  ~ *  according as ~ = ~ or  ~ .  Now 

assume there are 0, A, (~ with 0I _-< 0 < A < ~b _-< 0o and such that 
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re(K*;  0) = re(K*;  4 ' ) #  re(K*;  A ). 

We shall seek a contradiction and thus conclude that the arc of M ( f f * )  between 

m(K*;  0'1) and re(K*;  0o) is a simple path. If 

0 ~ U (a,,t3,) 
i = l  

then m(K~ ; O) = re(K; O) for all i. If 0 ~ (a,, fl,) then m(Kj ; 0) = m(K~ ; 0) for 

all j = i. Applying this argument to A and 4' we see that there is an I such that 

for /z = 0, A and 4' we have 

re (K*; / z )  = m(K, ; /z) 

for all i _>- L But then 6~ _-> 4' - 0 for all i => I contradicting the fact that 6~ ~ 0 as 

i - - -~ .  Consequently if m(K*;O)=m(K*;4')  with 0~<=0<4'~0o then 

re(K*;  A ) =  re(K*;  0) for all A ~ (0, 4'). But by Lemma 2, M(~;*) is rectifiable 

and so if we parametrize it by means of arc length we see that the arc of M(~-*) 

between m(K*;O'~) and m(K*;Oo) is a simple path. We also conclude from 

Lemmas 3 and 5 together with (18) that 

8A ( K * ) =  o'~(O)dO 

where or. denotes the length of a typical number of ~* .  

Applying the same arguments to the interval [0o, 0~'] we may assume that we 

have a convex set K such that 

y,2. 8A (K) = o-2(0)a0 

and that there are angles 0'~, 0;, 0o with 

re(K;03= m(K; O;) # m(K;Oo) 

such that the arc of M ( ~ )  between re(K; 0',) and re(K; 0o) and the arc between 

re(K; 0o) and re(K; 0~) are both simple paths. We shall denote these simple 

paths by P~ and P2 respectively. 

Our next aim is to show that P1 ~ Pz where we just consider the P, as point 

sets. To do this we assume P, = P2 and seek a contradiction. 

If o~ = ~2 and P1 = P2 we see that for each 01E (0~, 0o) there is a 02E (0o, 0;) 

with 

re(K; 0,) = re(K; 02). 
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If t is a one-sided tangent to M(K)  at re(K; 0,) then - t is a one-sided tangent to 

M(K)  at m (K;  02). Now let tj, t2, t3, 14 be the corresponding one-sided tangents 

to K at x(K; 01), y(K; 01), x(K;  02), y(K; 02) respectively. If t, is not parallel to 

t2 and t3 is not parallel to t4 we have 

(19) t = (t, + t2)(llt~ + t2ll)-' and - t = (t3 + t4)([lt3 + t4ll) -'. 

But the anticlockwise ordering of these unit vectors on the unit circle is 

t l ,  t3, t2, t4, tl 

and this clearly contradicts (19). Hence either t~ is parallel to tz or t3 is parallel 

to t4. 

If t, is not parallel to t2 we can find angles ~,, a2 close to 0~ with 

re(K;  c~) # re(K;  a2) and such that if 0 E (a, ,  a2) then K does not have parallel 

support lines at x(K; 0) and y(K; 0). We choose ~8,,/~2 close to 02 such that 

m(K;ol,) = m (K;/3~) 

for i = 1,2 and so that the sub-path of P, from re(K;  c~,) to m ( K ; a 2 )  is the same 

(except for orientation) as the subpath of P2 from m (K;/32) to m (K;/3 0. Then 

our above observations show that K has parallel support lines at the points 

x ( K ; 4 , )  and y ( K ; 4 , )  for all 4' ~(/32,/3~). It then follows from the proof of 

theorem 2.2 of [5] that re(K; B~) = re(K; 82) which contradicts our choice of aj 

and a2. Consequently we must have both t, parallel to t2 and t3 parallel to t4. But 

this must be true for any choice of 01 in (0'2, 00) and so the above argument now 

shows that re(K; 0'1)= ra(K; 00). This contradiction thus proves that P, # P2 in 

the case .~ = ca. 

Now assume ~ = Y( and P, = P~. We recall that if the tangents to K at 

x(K; 0) and y(K; 0) are not parallel then the tangent to N(K)  at re(K; 0) is 

parallel to x(K; 0 ) - y ( K ;  0). So we deduce that for each 0 E (0~, 0o), K must 

have parallel support lines at x(K; 0) and y(K; 0). This time we use the proof of 

theorem 2.4 of [5] to obtain re(K; 0'1)= re(K; 0o). So again we can use this 

contradiction to deduce that P1 # P2. 

If o% = ~d or Y( we can assume without loss of generality that Pl \ P2 # 0 .  So we 

can choose 0,, 02 with 0'~ < 0~ < 02_ -< 00 such that re(K; 01) • ra(K; 02) and 

re(K; 0) E P, IP2 for all 0 6 (0,, 02). We can of course do this in such a way that 

there are 03, 04E [0,,, 0~] with re(K; 0,) = ra(K ; 0~) and re(K; 02) = re(K; 0,). 
There are now two possibilities to consider: (i) 03 > 0, and (ii) 03 < 04. 

In case (i) we put C = K(02,0,) and D = C(03,0~+ zr). Let ~ ( D )  (resp. 

2g(D)) denote the family of perimeter (resp. area) bisecting chords of D and put 
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off(D) = ~ ( D )  or Yg(D) according as off = c~ or ~. Then M(Off(D)) is a simple 

closed curve contained in M(Off) and preserving the orientation of M(Off). In fact 

M(Off(D)) = {re(K; 0):  0 e [0,, 02] t_) [0~, 03]}. 

Also if CrD denotes the length of a typical member of off(D) we see that repeated 

use of Lemma 5 in conjunction with (18) gives 

fo 8 A ( D )  = 

But M(Off(D)) is simple and so our earlier observations show that D is centrally 

symmetric and thus that M(Off(D)) is a single point. This contradicts the fact that 

m(D; Ol) = re(K; 0,)• re(K;02)= re(D;02) 

and so case (i) cannot occur. 

In case (ii) we put 

05 = max{0 E [Oo, 03] : rn(K; O) = m(K; dp) for some ~b ~ [82, 00]} 

and choose 06E [02, 00] such that ra(K; 06) = re(K; 05). Then clearly 

0Z ~ 06 ~ 00 ~ 05 ~ 03- 

NOW as in case (i) we can construct a convex set D for which M(Off(D)) is the 

simple closed curve 

{re(K; 0): 0 e [0,, 06] t3 [05, 03]}. 

Again Lemma 5 and (18) show that 

8A (D) = o2o(O)dO 

and so the fact that M(Off(D)) is a singleton shows that case (ii) cannot occur. 

Consequently we have shown that for (18) to hold our set K must be centrally 

symmetric and so our theorems are established. 

REMARK. The following observation was recently brought to my attention by 

E. Lutwak to whom I am very grateful. If we use the notation 

Mt,(L,K) = {~-%~ fo 2" Lt'(K; O)dO} '/p 

for p ~ R\{0} then our first theorem can be restated in the form 

M2(L, K) >- 2 v ' ( A  (K)/¢r) 
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with equality if and only if K is centrally symmetric. For p = 0 or - ~ we put 

Mp (L, K)  = lim M, (L, K). 
s ~ p  

It is well-known (see G. H. Hardy, J. E. Littlewood and G. Polya, Inequalities, 
Cambridge University Press, 1934) that Mp (L, K) is continuous and monotone 

increasing in p and that 

M~(L, K) = max{L(K; 0): 0 ~ [0, 27r]} 

while 

M_~(L, K) = min{L(K; 0): 0 E [0, 2~r ]}. 

We immediately deduce that 

M~ (L, K)  _-> 2x/(A (K)/Tr) 

for all p > 2. In case p > 2 it also follows that equality occurs here if and only if K 

is a disc. Finally we note that if p < 2 and K is any centrally symmetric set except 

a clisc we have 

Mp (L, K) < M2(L, K) = 2x/(A (K)/,r). 
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